Semantic Similarity

Serbian AutoRIA - a model for automating the RIA mechanism for Serbian

Rapid Integrated Assessment (RIA) is a national policy document evaluation mechanism developed by the UNDP to help countries assess their readiness for the implementation of UN Sustainable Development Goals (SDG). The created model automates the RIA procedure for documents written in Serbian and is based on an earlier IBM approach developed for English. The model works by searching the documents for sentences / paragraphs that are a semantic match for one the SDG targets. The model repository also contains the Serbian national policy documents, as well as their stemmed versions. Further information can be found in the LT4All paper.

STSFineGrain – a collection of semantic textual similarity models

STSFineGrain is a Java package that contains a collection of semantic textual similarity models and a framework for their evaluation on STS corpora with fine-grained similarity scores. Seven different STS models are implemented, including three unsupervised and four supervised models. Among the supervised models there are both previously presented algorithms, such as LInSTSS and POST STSS, as well as the new POS-TF STSS model that outperforms them. Evaluation can be performed either on an entire dataset, or via cross-validation on it. STSFineGrain currently supports POST STSS and POS-TF STSS models for texts in Serbian and in English. Other models have no such language-related restrictions. This package was presented in the LREC 2018 paper.

The Serbian STS News Corpus (STS.news.sr)

The Serbian Semantic Textual Similarity News Corpus – STS.news.sr (ISLRN 146-979-597-345-4) consists of 1192 pairs of sentences in Serbian gathered from news sources on the web. Each sentence pair was manually annotated with fine-grained semantic similarity scores on the 0–5 scale. The final scores were obtained by averaging the individual scores of five annotators. The construction of this corpus is described in the LREC 2018 paper.

STSAnno – a tool for semantic textual similarity annotation

STSAnno is a tool written in Java for offline semantic textual similarity (STS) annotation. It allows the user/annotator to assign and change semantic similarity scores of text/sentence pairs in a given corpus. This tool was presented in the LREC 2018 paper.

Part-of-speech tag-supported short-text semantic similarity (POST STSS)

POST STSS is a method of computing short-text semantic similarity (i.e. semantic textual similarity) that uses a bag-of-words approach and relies on string overlap measures and lexical distributional semantics. Similarities between individual words are weighted according to their parts of speech. The optimal POS weights are determined using an incremental, hill climbing-based technique. The only language-specific resource POST STSS requires is a part-of-speech tagger (and optionally a lemmatizer), making it applicable to most languages. Further information about the algorithm can be found in the 2015 ComSIS paper. POST STSS is implemented within the STSFineGrain package.

Language-independent Short-Text Semantic Similarity (LInSTSS)

LInSTSS is a method of computing short-text semantic similarity (i.e. semantic textual similarity) that uses a bag-of-words approach and relies on string overlap measures and lexical distributional semantics. Similarities between individual words are weighted according to word frequencies. Since it does not use any language-specific tools or resouces, LInSTSS is easily applicable to any language. Further information about the algorithm can be found in the 2013 Decision Support Systems paper. LInSTSS is implemented within the STSFineGrain package.

The Serbian Paraphrase Corpus (paraphrase.sr)

The Serbian Paraphrase Corpus – paraphrase.sr (ISLRN 192-200-046-033-9) consists of 1194 pairs of sentences gathered from news sources on the web. Each sentence pair was manually annotated with a binary similarity score that indicates whether the sentences in the pair are semantically similar enough to be considered close paraphrases. The construction of this corpus is described in the 2011 TELFOR paper and the 2013 Decision Support Systems paper.