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A B S T R A C T

Code comments are one of the most useful forms of documentation and metadata for understanding software
implementation. Previous research on code comment classification has focused only on comments in English,
typically extracted from a few programming languages. This paper addresses the problem of code comment
classification not only in the monolingual setting, but also in the multilingual and cross-lingual one, in order to
examine whether they can outperform the traditional monolingual approach. To tackle this task, we introduce
a novel, publicly available code comment dataset, consisting of over 10,000 code comments collected from
software projects written in eight programming languages (C, C++, C#, Java, JavaScript/TypeScript, PHP,
Python, and SQL). About half of them are written in Serbian while the other half are written in English. This
dataset was manually annotated according to a newly proposed taxonomy of code comment categories. We
fine-tune and evaluate multiple monolingual and multilingual pre-trained neural language models on the code
comment classification task and compare their performances to several baselines. The best results for Serbian
comments are obtained using the monolingual neural model BERTić, trained on Serbian and closely related
languages. On the other hand, the optimal choice for English is the multilingual neural model multilingual
BERT, which successfully extracts useful patterns from data in both languages. Although the cross-lingual
setting shows some promise for simple binary classification, it has yet to reach sufficiently high performance
levels for practical use. We also analyze model performance across different programming languages.
. Introduction

Source code comments are an integral part of computer programs
nd, in many cases, make up for the lack of proper software documen-
ation. Comments are the second most used documentary artifact after
ode (de Souza et al., 2005). They carry rich information about the
nderlying software implementation, such as descriptions of the code
unctionality and properties, license and authorship information, usage
nstructions, notes about potential or observed bugs and issues, etc.
n addition to being an excellent documentation source, comments are
articularly important for source code maintainability (Hartzman and
ustin, 1993) and readability. For instance, Woodfield et al. (1981)
onducted one of the first experiments showing that commented code
s easier to understand and read compared to code without com-
ents. These findings were later confirmed by Tenny (1985, 1988).
ode commenting has been recognized as a good programming prac-
ice (de Souza et al., 2005), and comments play a vital role in helping
evelopers comprehend source code (Chen et al., 2021).

Code comments can greatly differ depending on their purpose,
arget audience, or other traits. For instance, some comments target
evelopers, while others target end-users of the program. Some describe
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the functionality of the related code, some the design rationale or
implementation details, while others are simply used as separators
of logical blocks of code. Developers usually comment on standard
code elements such as methods, classes, and variables. Hence, the
interpretation of a given comment can heavily depend on its position
in the source code. Moreover, unlike source code which must follow
the rules of a programming language, code comments allow substan-
tial freedom of expression. Currently, there exist several style guides
for writing comments. Some of them are designed for a particular
programming language, e.g., C++ (Google, 2022a), Python (Google,
2022b) or Java (Oracle, 2022), whereas some of them are more gen-
eral (Kramer, 1999; Tan et al., 2007). Regardless, following them is
not obligatory, and they do not precisely define the instructions for
writing all types of comments in a program. The structure and style of
comments are mostly left to the developers’ discretion. Furthermore,
code comments are usually written in a natural language, adding to
their complexity. Because of this, comments can become outdated and
hard to maintain. To enforce more discipline in writing and maintaining
comments there are a few approaches to write comments as code in a
formal language. For example, Nie et al. (2019) developed a framework
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that automatically evaluates, at each build, trigger-action comments
written in executable format. This framework takes actions based on
users’ specifications. For Java, the Javadoc markup language and tool
have existed since Java’s first release in 1995 and Doxygen, a similar
but cross-language tool appeared two years later. Tools like Jdoctor
developed by Blasi et al. (2018) automatically construct executable
procedure specifications from comments in this format.

Code comments provide information that has been leveraged to
help perform a wide range of software engineering tasks, such as bug
detection (Zhai et al., 2020), comment propagation (Zhai et al., 2020),
code summarization (Chen et al., 2021), code synthesis (Gvero and
Kuncak, 2015; Zhai et al., 2016), specification inference (Pandita et al.,
2012; Zhong et al., 2009), etc. Depending on the downstream task
in focus, not all code comments are equally important. Therefore, for
many of the tasks, the first step in tackling them is the identification
of relevant comments, typically framed in the form of code comment
classification.

In recent years, multilingual and cross-lingual studies have become
the standard in Natural Language Processing (Devlin et al., 2018;
Conneau et al., 2019; Grave et al., 2018). However, previous work in
code comment classification has been focused solely on monolingual
settings, since no publicly available multilingual datasets for this task
were available. Furthermore, previous research in this field is highly
fragmented, both in terms of the programming languages from which
code comments were collected and in terms of the used comment clas-
sification taxonomy. Typically, each paper presents its own set of code
comment categories, most often tailored to a particular downstream
task in mind (Kostić et al., 2022).

Padioleau et al. (2009), Haouari et al. (2011), and Steidl et al.
(2013) presented the earliest results in comment classification. Padi-
oleau et al. (2009) studied code comments to understand developers’
needs regarding the creation of new tools and languages or the im-
provement of the existing ones. Haouari et al. (2011) investigated
developers’ commenting habits by looking at the distribution of com-
ments concerning the program construct type that follows it. Steidl
et al. (2013) developed a semi-automated model for comment quality
analysis that is based on classifying comments into seven categories. On
the other hand, Shinyama et al. (2018) focused only on the comments
inside functions or methods, i.e., inline comments, which are not visible
n the documentation and often give insight into a developer’s intent.
hai et al. (2020) wanted to leverage program analysis to systematically
ropagate comments so that they can be passed on to uncommented
ode entities and help detect bugs. Here comment classification was
ecessary because comments with different content related to similar
rogramming entities cannot be propagated in the same way. Chen
t al. (2021) investigated the use of the relationship between code
locks and the categories of the corresponding comments to improve
ode summarization. They have found that different summarization
odels work best for different comment categories. Using comment

lassification, they could design a composite summarization model that
utperforms other approaches. Although code comment classification
s mostly researched in the context of different downstream tasks, the
tudy of Pascarella et al. (2019) focused on the empirical analysis of
ode comments to understand the types of comments developers write
n their source code. Another such example is the work of Zhang et al.
2018), which focused on code comment classification without having
ny downstream task in mind.

This paper addresses the classification of code comments written in
nglish, the most common language used in programming documen-
ation, and Serbian, our native language, which is under-resourced in
erms of NLP support. We wanted to see whether models trained on a
igh-resource language like English can help a low-resource language
ike Serbian, especially since words in English are frequently found
n comments written in some other language. This may be because

specific term has an established usage in its English form or lacks

n appropriate translation. We perform classification in three settings:

2

monolingual (comments from English and Serbian are used separately),
multilingual (models are trained on comments in both languages and
then evaluated on each language separately), and cross-lingual (models
trained on comments in one language are evaluated on comments in the
other language). Another reason behind our interest in code comment
classification are two downstream tasks – semantic code search (Husain
et al., 2019) and cross-level semantic similarity (Jurgens et al., 2014,
2016) – for which the proper identification of comment types is very
important. The main contributions of the work presented here are as
follows:

• To the best of our knowledge, this is the first work that tack-
les multilingual and cross-lingual code comment classification.
Previous research efforts have focused solely on monolingual
classification, likely due to the scarcity of datasets containing
code comments in multiple natural languages.

• A new code comment categorization taxonomy is presented, de-
signed to support various programming languages and paradigms
and multiple natural languages.

• A new dataset of around 10,000 comments is compiled, with
half of the comments written in Serbian, while the other half
is in English. These comments were taken from eight program-
ming languages (C, C++, C#, Java, JavaScript/TypeScript, PHP,
Python, and SQL) and were manually annotated according to the
newly proposed taxonomy.

• We evaluate multiple statistical classifiers, ranging from linear
baselines to state-of-the-art transformer-based neural language
models, using the aforementioned annotated dataset.

• This work represents the first effort to perform automated code
comment classification in Serbian. The developed models could
also be of use in classifying comments in closely related lan-
guages, like Bosnian and Croatian.

The remainder of this paper is structured as follows: Section 2 presents
previous work on code comment classification. Sections 3 and 4 de-
scribe the dataset creation process and analysis, respectively. Classifi-
cation evaluation and its results are shown in Section 5, whereas they
are discussed in Section 6. Finally, Section 7 contains conclusions and
pointers for future work.

2. Related work

All of the previously mentioned studies used comments in English
written within one of the following programming languages: C/C++,
Java, or Python. The ones that implemented automated systems for
comment classification usually did so by extracting specific features
from the comments and using traditional machine learning models.
Pascarella et al. (2019) used probabilistic classifiers such as multino-
mial Naïve Bayes and Decision Tree classifiers such as J48 and Random
Forest. They worked with 40,000 Java comment lines from open source
and closed source industry projects. They designed their classification
taxonomy consisting of six high-level and 16 inner categories. The
preprocessing of comments was executed in the following order: (1)
tokenization on spaces and punctuation, (2) splitting the identifiers
based on camel-casing, (3) lowercasing, (4) removing numbers and
rare symbols, and (5) splitting the comments at line level. The input
to the models were counts of occurrences of each word in the bag
of unique words, and two groups of custom features. The first group
relates to the context of the line, such as the text length, the number of
rows, the comment position in the file, etc. The second group contains
category-specific features recognized by different regular expressions.
The metrics considered were precision and recall for each category and
the average weighted true positive rate after a standard 10-fold cross-
validation. Even though the overall accuracy was higher for Random
Forest classifiers, the authors found that the best classifier is based on
the probabilistic approach. The performance of the multinomial Naïve

Bayes model is promising for the six high-level categories: for open
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source projects, precision and recall are always above 93%. In contrast,
a performance drop down to 70% per category is detected for the
industry projects. The same trend is visible in the inner categories. On
average, the precision for inner categories is again better in open source
projects compared to industrial ones. However, metrics drop down to
50% for some categories.

Steidl et al. (2013) used 830 Java and 500 C/C++ comments to train
a J48 Decision Tree to classify comments into one of the seven proposed
categories. They also created custom features like the number of words
in a comment, booleans indicating whether the comment contains
some special terms (ex. copyright, license, fixme, etc.), the
percentage of special characters, etc. For evaluation, a standard five-
fold cross-validation was used. The decision Tree achieved a weighted
average precision and recall of 96% on Java comments. Similar results
are obtained with the J48 tree applied to the C/C++ comments.

Another work that uses Decision Trees is the work of Shinyama
et al. (2018). They used 1000 Java comments to find the best Decision
Tree to perform classification into one of 11 categories. Unlike previous
papers, here the features are based on part-of-speech (POS) tagging.
The tagger assigns one of the 36 POS tags to each word (ex. VBZ for a
erb in 3rd person or NNS for a plural noun). Although the metrics vary
epending on the category, the classifier has a reasonable performance
61% precision and 89% recall) for the postcondition comment category,
hich was the target category of the research.

The comment classification described by Zhai et al. (2020) is unique
or several reasons. First, the taxonomy contains two dimensions: per-
pective and code entity. Second, a comment can belong to multiple cate-
ories of one dimension simultaneously, making this a multi-label clas-
ification problem. Furthermore, the authors used a convolutional neu-
al network (CNN) in addition to the Decision Tree and Random Forest
odels. Their training dataset contained 5000 Java comments. These
ere preprocessed in the following steps: (1) class/method/variable
ames were replaced with corresponding placeholders, (2) stop words
ere removed, (3) the remaining words were stemmed and (4) low-
rcased. To get the embeddings, word2vec algorithm was applied to
he comment dataset instead of using the existing word embeddings
rained on news articles. Also, eight custom features were generated
ased on part-of-speech tags. The Decision Tree and Random Forest
sed these features. Standard five-fold cross-validation was used, along
ith the four metrics: precision, recall, f1 score and Hamming loss. For

he perspective dimension, CNN gives the best results, with the f1 score
f 94%. However, the code entity perspective was best classified with
he Random Forest (f1 score 99%). Here, CNN produced significantly
ower scores (f1 score 82%).

Our interest in code comment classification was driven by two
ownstream tasks — semantic code search (Husain et al., 2019) and
ross-level semantic similarity (Jurgens et al., 2014, 2016). In semantic
ode search, the goal is to retrieve the most relevant code block(s) for a
iven query in a natural language. To do so, most models rely not only
n the code blocks but also on the accompanying comments, which
escribe code functionality (Husain et al., 2019). Cross-level semantic
imilarity, a variant of the semantic textual similarity task (Agirre et al.,
012), aims to assign a numerical semantic similarity score between
wo texts of different lengths written in a natural language (Jurgens
t al., 2016). Such a similarity measure is of great use in semantic
ode search since it can detect semantic links between queries (usually
imited to a couple of words) and code comment blocks (whose length
aries from a phrase to a paragraph). Both downstream tasks focus
n comments describing code functionality and/or usage. This makes
t necessary to properly identify such comments within given source
ode files, regardless of the programming and natural languages used.
owever, the literature review showed no code comment classification

ystems and taxonomies designed with these two downstream tasks in
ind.
3

. Dataset construction and annotation

To examine code comment classification in multilingual and cross-
ingual settings, it is necessary to use datasets in multiple natural
anguages that are hand-labeled according to the same set of categories
nd use the same annotation instructions. Since no such datasets were
vailable, it was necessary to construct one. We focused on two natural
anguages: Serbian, our native language, and English. This allowed us
o compare model behaviors in different settings. Serbian is a minor
anguage, under-resourced in terms of NLP support, whereas English is
he most prominent language used in software development. Serbian
s also a morphologically rich language, whereas English is not. This
eans that substantial grammatical information in Serbian is expressed

t a word level, using different word forms. For example, nouns are
eclined across seven grammatical cases, they can belong to one of
hree grammatical genders, and can sometimes have two distinct plural
orms depending on the number (less or greater than five). Similarly,
erbs can typically appear in dozens of different forms, depending on
he tense, person, number, and grammatical gender. This allows words
o change their position in a sentence, i.e., the word order is quite free
nd there are no articles (Popović and Arcan, 2015). To avoid limiting
he research to merely one or two of the most popular programming
anguages, we included in the dataset code comment samples from
ultiple languages belonging to different programming paradigms and
se cases. The selection of programming languages was also determined
artly by the availability of adequate data in Serbian. Therefore, the set
f programming languages that are considered includes the following:
, C++, C#, Java, JavaScript/TypeScript, PHP, Python, and SQL.

First, we compiled a dataset of around 65,000 comments with ∼70%
f comments in English and ∼30% of comments in Serbian. These com-
ents were extracted from various sources, including student projects
∼13% of comments), coursework at the University of Belgrade (∼10%

of comments), software projects developed at the Computing Center of
the School of Electrical Engineering, University of Belgrade and other
industry partners (∼1% of comments), as well as public repositories
such as GitHub (∼76% of comments). The information about their
source file and line number was also retained for most comments.
This allowed us to use the surrounding context of the comment in the
annotation process, making it easier to select the appropriate comment
category. Exceptions were some comments in Serbian obtained from
industry partners, where only the comment texts were placed at our
disposal, rather than entire source code files. After removing duplicates,
10,000 code comments, divided approximately equally between the
two natural languages and the eight programming languages were
randomly sampled from the remaining ∼49,000 comments. Table 1
shows one entry from the dataset for both Serbian (SR) and English
(EN).

Next, we had to select a set of code comment categories to be used
in data annotation. As mentioned in the previous section, the existing
code comment taxonomies were neither designed with the downstream
tasks of interest in mind nor applicable to multiple natural and pro-
gramming languages (Kostić et al., 2022). The taxonomy of Padioleau
et al. (2009) does not have explanations of all its categories. Zhai
et al. (2020) classify comments according to two dimensions whereas
Haouari et al. (2011) have even more dimensions (four), which is too
complex for our use case. Shinyama et al. (2018) focused only on the
inline comments, but other functional comments are just as important
for our downstream tasks. The taxonomy introduced by Zhang et al.
(2018) is tailored for Python comments and therefore cannot be easily
applied to comments written in other programming languages. Chen
et al. (2021) distinguish between different content perspectives and do
not have a separate category for functional comments. The remaining
two taxonomies (Pascarella et al., 2019; Steidl et al., 2013) do put the
emphasis on the comments that describe code functionality. That is why
they are used as inspiration for our own taxonomy.

For the downstream tasks of interest, the most important com-
ments are the ones that describe code functionality. The first step is
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Table 1
One entry from the dataset for each of the natural languages.

Natural language Programming language Source path and line number Comment text

EN PHP symfony/src/Symfony/Component/
Stopwatch/ Section.php/88

@return string The identifier of the
section.

SR C# samedb/Studentska-
sluzba/Aplikacija/Studentska-
služba/DatabaseController.cs/106

Funkcija ComputeHash prima i vraca byte[]
pa zbog toga ova konverzija string u
byte[] i nazad

(English: The ComputeHash function receives
and returns byte[] thus the conversion of
the string to the byte[] and back.)
distinguishing between functional and non-functional comments via
two top-level categories. These two categories are then divided into
eight subcategories. Functional comments are further divided based
on the type of the corresponding source code because we believe
that will be useful for the semantic code search. Even though non-
functional subcategories are not required for the downstream tasks of
interest, we still included them in our taxonomy to make the annotated
datasets usable for other tasks, such as code comment summarization,
automated code comment generation, etc. We designed our own non-
functional categories since the taxonomy of Pascarella et al. (2019) is
very demanding to work with (it contains as many as thirteen non-
functional categories). On the other hand, the taxonomy of (Steidl et al.,
2013) has only four non-functional categories, all closely related to
Java and C++ programming languages, which are not sufficient to
cover all the diverse comments from various programming languages
we are using in our research. Our categories are mutually exclusive. A
detailed description of the proposed categories can be found in Kostić
et al. (2022), but they are presented briefly below as well:

I. The Functional category contains comments describing the
functionality of the corresponding code, its purpose, behavior,
why something is implemented in a certain way, etc. These
comments can respond to the questions What?, Why? and How?.
Based on the type of the corresponding source code, three
subcategories can be distinguished:

(1) Functional-Module comments that describe the func-
tionality of a particular module like a class or an inter-
face (e.g., Base class for events thrown in the
HttpKernel component.);

(2) Functional-Method comments that describe the func-
tionality of a function or a method (e.g., Returns a
generated Firestore Document Id.);

(3) Functional-Inline comments that describe the function-
ality of a variable or an expression (e.g., create an
appropriate Entry object).

II. The Non-functional category covers all comments that do not
describe code functionality. It consists of five subcategories:

(4) Code — source code that has been commented out
(e.g., size = round_up(map->value_size, 8););

(5) Notice — warnings, alerts, and messages intended for
the developers or users of the code, deprecated artifacts
and instructions regarding their replacements, motivation
for some implementation decisions, usage examples and
suggestions (e.g., Implement IDisposable. Do not
make this method virtual. A derived class
should not be able to override this method.);

(6) IDE — comments that communicate with the Integrated
Development Environment (IDE) or the compiler (e.g.,
tslint:disable:no-big-function);

(7) ToDo — explicit tasks to be done and notes about
bugs that need to be fixed (e.g., @todo Simplify the
logic);
4

(8) General — meta-information such as license, copyright,
authorship, version, the name or the path of the file, etc.
(e.g., Copyright(c) 2019 Intel Corporation.).

The initial annotation instructions consisted of comment category def-
initions and examples of typical kinds of comments, with instructions
on how they should be labeled. Calibration of these instructions was
performed by two annotators who used them to label a set of 500
randomly chosen comments in parallel. The first author served as the
main annotator, with another graduate student in software engineering
being the secondary annotator. Discussions were conducted for each
point of disagreement between them, and the annotation instructions
were updated accordingly. Finally, the main annotator assigned labels
to all the comments, while the secondary one annotated a random
subset of 20% of the comments. We used the labels on this subset to
estimate the inter-annotator agreement. Since the obtained agreement
levels were quite high, as discussed in Section 4 of the paper, it
was unnecessary to search for additional annotators. The resulting
dataset and the final annotation instructions (in Serbian) are publicly
available at the following GitHub repository: https://github.com/ETF-
NLP/AVANTES-Classification.

Annotation was performed using a custom-built web application
called Comanno. This application was developed to expedite the repet-
itive and error-prone task of manual classification. Fig. 1 displays a
screenshot of the application. Comanno shows the currently selected
comment (②) and its surrounding code — context (①). An annotator
can choose one of the predefined categories from the group of radio but-
tons on the right hand side (③). The table of all comments at the bottom
of the screen (④) contains additional information such as the natural
language, programming language, repository and file identifiers, and
the assigned category. A user of this application can search through,
and sort this table based on any of the provided columns.

The initial set of comment texts was obtained via direct extraction
from source code files, where multiline comments were treated as single
units. However, during the annotation process, such comments were
found to sometimes consist of two or more separate and unrelated
statements, belonging to different comment categories. To solve this is-
sue, such comments were manually divided into multiple shorter ones,
each belonging to a particular comment category. This led to slightly
different final numbers of comments between the English and the
Serbian subset. This is the reason why categories in the Commano tool
include not only eight categories from the newly proposed taxonomy
but also some additional categories that are useful for the calibration
and annotation processes (e.g. To be divided category means that the
corresponding comment should be manually divided into multiple com-
ments outside of the tool. Another example is the Undecided category
that indicates that the annotator is not sure which category to assign,
and that the comment in question should be discussed as part of the
calibration).

The manual annotation process was fairly similar for both English
and Serbian comments. One minor difference is that ToDo comments in
English almost always contain the keyword TODO or FIXME, making
them easy to identify (e.g., TODO: perform the search on a
per txq basis.). Conversely, their counterparts in Serbian tend
to be much longer and more flexible in terms of the vocabulary they

https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
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Fig. 1. Screenshot of the Comanno annotation tool.
employ (e.g., dodaj opciju da ako lista ima jedan element,
vrati tu vrednost i ne zove evalExp. (English: add an
option that if the list has one element, that value is
returned and evalExp is not called.)).

4. Data analysis

The final dataset consists of 10,132 comments out of which both an-
notators annotated 2040 comments. There are 5039 comments in Ser-
bian (SR) and 5093 comments in English (EN). No relevant code repos-
itories with PHP code and comments in Serbian could be found. Re-
garding the JavaScript/TypeScript family of programming languages,
the Serbian portion of the dataset contains only comments written in
TypeScript. In contrast, the English portion includes approximately the
same number of comments in both language variants. Fig. 2 shows
the number of comments per programming language, natural language
and category, whereas Fig. 3 shows the number of comments per
category and natural language. In both natural languages, Functional-
Inline comments make up around or over 50% of all comments, whereas
the total number of Functional comments of all kinds reaches over 75%.
Code, Notice and ToDo comment categories each make up around 5%–
8% of data in both languages, with General comments around 2%. IDE
omments are the least numerous, representing about 2% of comments
n English, and are practically non-existent in Serbian data since all
ools generate such comments only in English. The IDE category was
herefore necessarily omitted from all model evaluations in Serbian.

Another factor to consider is the distribution of comment lengths.
e used the NLTK tokenization (Bird et al., 2009) for the comments

n English, whereas for the comments in Serbian the ReLDI tokenizer1

1 https://github.com/clarinsi/reldi-tokeniser.
5

was applied. The average comment lengths, expressed in terms of the
number of tokens, are shown in Fig. 4. For every comment category
except ToDo, comments in English are longer, especially in the case of
the Functional-Method and General categories. This is probably due to
the difference in comment sources between the two languages, with
English comments taken mostly from open-source project repositories
with clearer documentation standards. Conversely, a major source for
comments in Serbian were student projects, where code commenting
was not a priority, leading to comments in Serbian being, on average,
shorter and less detailed than the comments in English.

We measured the inter-annotator agreements using Cohen’s Kappa
coefficient (Cohen, 1960) and Krippendorff’s alpha coefficient (Krip-
pendorff, 2004). The agreement is measured for three variants of label
interpretation:

1. Binary classification — functional vs. non-functional comments.
2. Full class set classification — all subcategories for both func-

tional and non-functional comments are treated separately.
3. Reduced class set classification — all functional comments

are combined into a single category, while the non-functional
comments are divided into subcategories.

Table 2 shows these measures for different classification settings for
all comments and comments in each of the two natural languages. The
agreement scores are very similar between the Binary and the Reduced
class sets, but the scores decrease for the Full class set, particularly
for data in Serbian. This indicates that the main source of confusion
is identifying the subtypes of Functional comments. To confirm this
assumption, we look at the confusion matrix shown in Table 3. Indeed,
the highest disagreements between the annotators are found for com-
ments that only one annotator has labeled as Functional-Method or as

Functional-Inline. A probable cause of this issue is the lack of context,

https://github.com/clarinsi/reldi-tokeniser
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Fig. 2. The distribution of comments across code comment categories, natural languages, and programming languages.
Fig. 3. The distribution of comments across code comment categories and natural languages.
i.e., surrounding source code for some of the annotated comments.
Without such contextual information, it is often difficult to confidently
determine the location of a functional comment and whether it pertains
to a single line of code, an entire method, or even a class. Neverthe-
less, even when all subcategories are considered, the agreement levels
are consistently over 0.8 in terms of Krippendorff’s alpha coefficient,
indicating that the agreement is reliable (Krippendorff, 2004; Artstein
and Poesio, 2008). The only more prominent disagreement between the
annotators was the differentiation between the Functional-Inline and No-
ice categories, as some comments can be regarded as either functional
r as a warning (e.g., The requested capture operation is
ot supported.). There are no significant differences in agreement
6

Table 2
Inter-annotator agreement scores.

Setting ALL EN SR

Kappa Alpha Kappa Alpha Kappa Alpha

Full 0.843 0.843 0.866 0.866 0.815 0.814
Reduced 0.897 0.897 0.902 0.903 0.892 0.892
Binary 0.902 0.902 0.903 0.903 0.901 0.901

scores across natural languages for the Binary and the Reduced class

sets.
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Fig. 4. Average comment length in tokens across code comment categories and natural languages.
Table 3
Inter-annotator confusion matrix.

Functional-Module Functional-Method Functional-Inline Code Notice IDE ToDo General Total

Functional-Module 85 7 20 0 7 0 1 0 120
Functional-Method 1 302 78 0 0 0 0 0 381
Functional-Inline 5 17 1008 4 22 0 0 1 1057
Code 0 1 4 151 0 0 0 0 156
Notice 1 1 17 0 107 0 2 0 128
IDE 0 4 4 0 0 12 0 2 22
ToDo 0 0 5 0 7 0 109 0 121
General 0 0 0 0 0 1 0 54 55
Total 92 332 1136 155 143 13 112 57 2040
0
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5. Model evaluation

We evaluate multiple supervised statistical models on the task of
code comment classification in three settings: monolingual, multilin-
gual, and cross-lingual. In the monolingual setting, datasets from the
two natural languages are used separately. In the multilingual setting,
models are trained with comments written in both natural languages
but tested only on comments from one natural language at a time.
Lastly, in the cross-lingual setting, models are trained using comments
written only in one natural language and tested on comments written
in the other natural language.

5.1. Evaluation setup

The models in all experiments are trained and tested using the
annotated data described in the previous sections. For the dataset’s
initial cleanup, we replace whitespace character sequences with a single
space character. Sequences of repeating characters (three or more) are
also replaced with a single occurrence of that character. The aim is
to remove decorative sequences of dashes, asterisks, backslashes, and
similar characters.

Evaluations in the monolingual setting are performed using 10-fold
stratified cross-validation. The same method is used in the multilingual
setting — train folds have comments in Serbian and English, while test
folds always consist only of comments in a single natural language.
On the other hand, in the cross-lingual setting, there is no need for
cross-validation since the models are trained on data in one natural
language and tested on data in the other. To avoid bias towards the
larger classes in the dataset, the macro-averaged f1 score is utilized as
the performance metric.

As a baseline for monolingual classification, we use traditional
machine learning algorithms, such as multinomial Naïve Bayes (MNB),
Logistic Regression (LOG), and Support Vector Machine (SVM). These
models are applied to two different approaches for comment vector-
ization: bag-of-words (BOW) and bag-of-embeddings (BOE). A nested
10-fold stratified cross-validation is used to optimize their hyperpa-
rameters: C ∈ {0.001, 0.01, 0.1, 1, 10} for L2-regularized Logistic
7

Regression and linear Support Vector Machine, and alpha ∈ {0.001,
.01, 0.1, 1, 10} for multinomial Naïve Bayes. We utilize the scikit-
earn implementations of these classifiers (Pedregosa et al., 2011),
pting for the L-BFGS-B solver for Logistic Regression and the liblinear
olver for the Support Vector Machine.

We also evaluate several state-of-the-art pre-trained monolingual
nd multilingual neural language models, based on Transformer archi-
ectures, after fine-tuning them on the presented dataset. The monolin-
ual models included in the evaluation are ELECTRA (Efficiently Learn-
ng an Encoder that Classifies Token Replacements Accurately) (Clark
t al., 2020) for comments in English, and BERTić (Ljubešić and Lauc,
021) for comments in Serbian. Monolingual models are used only
n the monolingual setting, while multilingual models are evaluated
n the multilingual and cross-lingual settings. The multilingual models
ncluded in the evaluation are BERT (Bidirectional Encoder Representa-
ions from Transformers) multilingual base model (Devlin et al., 2018)
nd XLM-RoBERTa (Conneau et al., 2019) since they both support
ot only English but also Serbian. All the models have 110 million
arameters and 12 transformer layers and attention heads. We employ
he Simple Transformers library2 to interface with the HuggingFace
ransformers implementations (Wolf et al., 2020). The presented re-
ults for all transformer models are those obtained as a mean of five
uns with different random seed values.

For all settings and models, the same three variants of the code
omment classification task described in the previous section are con-
idered: Binary classification into functional and non-functional com-
ents, Full class set classification with all subcategories for both func-

ional and non-functional comments, and a Reduced class set variant
ith all non-functional subcategories and one category that encom-
asses all functional comments.

.2. Monolingual classification

In the monolingual setting, comments in English are separated from
he ones in Serbian and hence viewed as distinct sets of data.

2 https://simpletransformers.ai.

https://simpletransformers.ai
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5.2.1. Bag-of-words
The evaluation starts by using bag-of-words (BOW) features. Here,

a text is represented as an unordered set of words. In this context,
the following preprocessing techniques are examined: different tok-
enization approaches (whitespace tokenization, scikit-learn tokenizer,
NLTK tokenizer for English, ReLDI tokenizer for Serbian3), removing
digits, removing punctuation, lowercasing, splitting tokens based on
camel-casing (e.g., ‘‘HashMap’’ becomes ‘‘Hash Map’’) and snake-casing
(e.g., ‘‘hash_map’’ becomes ‘‘hash map’’), stemming (Porter stemmer for
English (Porter, 1980), stemmer of Ljubešić and Pandžić for Serbian4.),
nd lemmatization (WordNet for English,5 ReLDI lemmatizer for Ser-
ian (Ljubešić and Dobrovoljc, 2019)). The extension of the feature
et with n-grams is also explored — sequences of two (bigrams) or
hree (trigram) consecutive tokens, as well as TF (term frequency) and
DF (inverse document frequency) weighting, which aims to reflect
ow important the word is. The preprocessing technique selection is
ombined with the selection of the best n-gram and TF/IDF weighting
ettings. Although our aim is to select the optimal configuration of all
hese options, it is not viable to try out all the combinations. Hence,
ach preprocessing technique is considered and enabled if it improves
he performance of all classifiers in all settings.

The results for comments in the English language are presented in
able 4. The first step is to pick the best tokenizer. Among the three,
he NLTK tokenizer is by far the best choice, which is unsurprising,
ince it is the only one that is not based on simple regular expressions.
t is therefore included in the evaluation of subsequent techniques. The
cores in the table represent the difference compared to the baseline.
plitting tokens based on camel or snake casing occasionally improves
he classification results, but most often lowers them. The same is
rue for token lowercasing or using lemmatization and stemming. Fur-
hermore, punctuation tokens are important for classification quality

when removed, scores decrease by more than 5% in almost all
ettings. On the other hand, the addition of bigram features consistently
mproves the scores, so it is added to the list of selected techniques. The
xtension of the feature set to bigrams (and trigrams) is of particular
se for multinomial Naïve Bayes. TF weighting is most helpful for
he SVM classifier and is usually superior to TFIDF. Therefore, the
ptimal preprocessing techniques are NLTK tokenizer, bigrams, and TF
eighting.

For the optimal set of preprocessing techniques, we looked at the
pecific words that the models picked up as the most discriminative. We
ound that the most informative tokens are those related to operators
nd command terminators. In addition to those, specific keywords are
uite important (e.g., TODO, FIXME, copyright, return, param,
uthor, include, https, TABLE, public etc.).

The results for the Serbian language are presented in Table 5.
he usefulness of particular techniques is very similar to the previous
nglish language analysis. Again, the best tokenizer is the one not
ased on simple regex — ReLDI. In contrast, the splitting of tokens
ased on camel or snake case, token lowercasing, lemmatization, and
temming do not consistently help. Removing punctuation again causes
significant drop in the performance scores.

The main difference compared to English happens when looking at
igrams and trigrams. Although these techniques again improve the
esults of MNB models, for the others, the benefits of higher-order n-
rams decrease with the increase in the number of categories. Unlike
ith English, this actually results in a performance reduction when

ompared to the base modes. This is the reason why neither bigrams nor
rigrams are selected for Serbian. The cause of this discrepancy between
he natural languages likely lies in the greater morphological complex-
ty of Serbian, leading to greater data sparsity, which, combined with
igher-order n-grams, can easily lead to overfitting. Conversely, TF

3 https://github.com/clarinsi/reldi-tokeniser.
4 http://nlp.ffzg.hr/resources/tools/stemmer-for-croatian
5 https://wordnet.princeton.edu.
8

weighting again proves useful, particularly for the SVM, and superior
to TFIDF. Therefore, the final list of techniques is ReLDI tokenizer and
TF weighting.

We again looked at the most informative tokens for the best set
of preprocessing techniques. The results are similar to the results for
English. Operators, command terminators and keywords such as TODO,
@param, @author are important. Some discriminative words in Ser-
bian are: korak, klasa, funkcija, upit, metoda (engl. step,
class, function, query, method).

Fig. 5 concludes the analysis of the behavior of monolingual base-
ine models with BOW features. It contains an overview of all the best
cores previously presented, with the SVM being consistently the best
lassifier among the three. The scores across the two natural languages
ook very similar.

.2.2. Bag-of-embeddings
The second part of the monolingual evaluation is based on word

mbeddings. Each comment is represented by the mean of the fastText 6

mbeddings of its tokens. The embeddings for English are taken from
he two datasets: wiki_news — one million word vectors trained
n Wikipedia 2017, UMBC web base corpus and statmt.org news
ataset, and crawl — two million word vectors trained on Common
rawl (Mikolov et al., 2018). Both datasets have embeddings of size
00. For the Serbian language, the embeddings trained on Common
rawl and Wikipedia (cc_sr) (Grave et al., 2018) are used, as well as
hose trained on the Serbian srWaC web corpus (embed_sr) (Ljubešić,
018). Here only the SVM classifier is applied since it showed the best
esults in the previous setting. We use the same approach as for the
OW features and explore the same preprocessing techniques. The only
ifference is that stemming is not considered here because stemmed
okens are not available in the pre-trained sets of embeddings.

The results for the comments in English are presented in Table 6.
gain, the best tokenizer is the one from the NLTK package. However,
o other examined technique brings any improvement to the f1 score.
he biggest drop in the scores happens when punctuation is removed,
hich means that punctuation characters and their embeddings repre-

ent a significant classification signal. Crawl embeddings consistently
ive better results, which is expected as that set of embeddings was
reated using a bigger training set. Moreover, when using crawl em-
eddings, there are fewer tokens without an embedding compared to
iki embeddings.

Table 7 contains the corresponding results for the comments written
n Serbian. Once again, the best tokenizer is the ReLDI one. In contrast
o the English language, where lowercasing improves the results only
n the case of Binary classification, here it improves them in all vari-
nts. Consequentially, lowercasing is added to the list of preprocessing
echniques. Again, embeddings for punctuation are important for the
uality of the classification. Cc_sr embeddings lead to significantly
etter results since the percentage of tokens without embeddings is
uch lower than in the case for the embed_sr set of vectors.

When comparing scores obtained in the two natural languages
Fig. 6), it can be seen that Binary classification performances are on
ar, whereas multiclass classification results are noticeably lower in
erbian. One of the causes for this may be that Serbian embeddings
re of lower quality than English ones because of the smaller amount
f data they were trained on, especially given the greater morphological
omplexity of the language.

6 https://fasttext.cc.

https://github.com/clarinsi/reldi-tokeniser
http://nlp.ffzg.hr/resources/tools/stemmer-for-croatian
https://wordnet.princeton.edu
https://fasttext.cc
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Table 4
Monolingual classification for English — bag-of-words scores.
Table 5
Monolingual classification for Serbian — bag-of-words scores.
Fig. 5. Monolingual classification — best bag-of-words scores across natural languages.
9
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Table 6
Monolingual classification for English — bag-of-embeddings scores.
Table 7
Monolingual classification for Serbian — bag-of-embeddings scores.
Fig. 6. Monolingual classification — best bag-of-embeddings scores for both natural languages.
10
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Fig. 7. Monolingual classification for English — ELECTRA (a) and Serbian — BERTić (b).
5.2.3. Transformer models
The final part of the monolingual evaluation focuses on the state-

of-the-art neural language models based on Transformer architectures
— ELECTRA (Clark et al., 2020) for English and BERTić (Ljubešić
and Lauc, 2021) for Serbian. For the monolingual classification, we
split the dataset based on the language. The models are fine-tuned for
one, three, and five epochs. For each classification class set, there are
50 data points (5 different seeds * 10 cross-validation folds) that are
represented via the box and whisker plots.

Fig. 7 shows the results of monolingual classification for both
natural languages. The scores improve by increasing the number of
fine-tuning epochs, as expected. The improvement is not drastic for
Binary classification, unlike for the Full and the Reduced class sets,
where the macro f1 score rises by more than 30pp. Additionally, when
fine-tuning the models only for one epoch the score variance is quite
noticeable, but it becomes less pronounced with longer lengths of
fine-tuning.

5.3. Multilingual classification

For multilingual classification, multilingual models — multilingual
BERT (Devlin et al., 2018) and XLM-RoBERTa (Conneau et al., 2019)
are fine-tuned using comments written in both languages. To compare
the results in the two natural languages, evaluation is first performed
using comments only in English, and then only those in Serbian.

The two models give very different results for classifying English
comments (Fig. 8). Multilingual BERT produces excellent results even
after fine-tuning for only one epoch. Also, the spread of the scores
is very low. On the other hand, the scores of XLM-RoBERTa show a
significant variance. To produce good and consistent results with this
model, it is necessary to fine-tune it for more than one epoch. Of course,
for both models, the results improve as the fine-tuning length increases,
though the differences between three and five epochs are slight for
multilingual BERT.

Classification of comments in Serbian in a multilingual setting
(Fig. 9) produces excellent results in the Binary classification. Fine-
tuning for more than one epoch does not significantly improve the
results of Multilingual BERT (same as English), but it does help XLM-
RoBERTa. The score spread is very similar for Multilingual BERT re-
gardless of the number of epochs, whereas for XLM-RoBERTa it de-
creases with longer fine-tuning.
11
5.4. Cross-lingual classification

For cross-lingual classification, the same multilingual pre-trained
models are fine-tuned on comments in one language and tested on
comments in the other. Due to this, cross-validation is not used, so for
each setting, there are only 5 scores, one per seed value. Nevertheless,
the results are presented in the same manner as the previously shown
ones for consistency.

Fig. 10 shows the test results on comments written in English. Mul-
tilingual BERT’s results improve as the fine-tuning length is extended,
but not significantly. That is not the case for XLM-RoBERTa, which
produces dramatically higher scores in the non-binary classification
when fine-tuned for more than one epoch. However, neither model
performs well on the Reduced and the Full class set classification,
having a macro f1 score of around 50%.

6. Discussion and analysis

This section compares this work to the papers described in Section 2.
Additionally, the best results achieved in each classification setting and
classification class set variant are discussed. Last part of this section
considers Full class set classification performance of best-performing
models across different programming languages.

Scores for the Serbian comments look similar (Fig. 11). Multilingual
BERT again performs rather consistently regardless of the number of
epochs. In contrast, XLM-RoBERTa needs to be fine-tuned for more than
one epoch to give somewhat good scores for the Reduced and the Full
class set classification.

6.1. Comparison to related work

In this subsection, we present a comparison between methods,
previously described in Section 2, and our own work. We are the first
to address the problem of code comment classification in multilingual
and cross-lingual settings. All previous studies used traditional machine
learning models (Decision Tree, Random Forest, multinomial Naïve
Bayes) or earlier neural network architectures (LSTM, Convolutional
Neural Networks) in a monolingual setting. None of them used state-
of-the-art transformer-based neural language models. Annotations from
previous papers were mostly done on small sets of code comments
written in English and taken from one or two programming languages.
In this research, we have compiled a new dataset of around 10,000
comments written not only in English, but also in Serbian, and these
comments were taken from eight programming languages.
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Fig. 8. Multilingual classification for English — Multilingual BERT (a) and XLM-RoBERTa (b).

Fig. 9. Multilingual classification for Serbian — Multilingual BERT (a) and XLM-RoBERTa (b).

Fig. 10. Cross-lingual classification for English — Multilingual BERT (a) and XLM-RoBERTa (b).

12
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Fig. 11. Cross-lingual classification for Serbian — Multilingual BERT (a) and XLM-RoBERTa (b).
No previously proposed code comment classification taxonomies
ere created for the tasks of semantic code search and cross-level

emantic similarity. In addition, some of them observed more than one
erspective, which does not apply to these tasks (Zhai et al., 2020; Padi-
leau et al., 2009; Haouari et al., 2011). Previous taxonomies are either
oo complex regarding the number of different categories (Shinyama
t al., 2018; Zhang et al., 2018) or they do not consider the position
f functional comments (Chen et al., 2021) which is important for the
asks of interest. For these reasons, the taxonomy we propose in this
aper builds upon the work of Steidl et al. (2013) and Pascarella et al.
2019).

Unfortunately, it is hard to compare annotation agreements since
greement measures and the number of annotators differ from paper
o paper. Comparing model performances across different proposed
ethods is equally difficult since no evaluation metrics are universally

pplied. Moreover, the presented evaluation scores are typically calcu-
ated solely on proprietary datasets which are not publicly available,
aking it impossible to verify the original findings and contrast them

o the performances of other models on the same data.

.2. Discussion about our evaluation results

A comparison between the best results we achieved in each clas-
ification setting and class set variant is shown in Fig. 12 for English
nd Fig. 13 for Serbian. Unsurprisingly, the classifier error rates tend
o increase as the number of classes expands from Binary classification
o the Full class set. It is evident that the simple bag-of-words method,
oupled with linear classifiers, still presents a rather strong baseline
cross all settings and languages, with f1 scores of only ∼2pp–5pp be-

low the best-performing model. This baseline proves to be superior even
to the monolingual ELECTRA model on English data in all classification
variants except the Binary one. This performance differential is likely
due, at least in part, to the higher variance of the neural model. On
the other hand, the bag-of-embeddings systems tend to behave rather
poorly in comparison and are consistently worse than all other non-
cross-lingual options. A probable cause is the relatively high percentage
of tokens for which no embeddings could be found in the utilized
embedding sets, ranging from 9.5 to 10.5%. However, the drop in
performance is more significant for the data in Serbian. The reason
for this may be the greater morphological complexity of the Serbian
language which makes it harder to create quality embeddings.

Moving on to transformer-based models, the multilingual variants
are superior to monolingual ones in English. This demonstrates the use-
fulness of multilingual fine-tuning, with multilingual models extracting
13
useful patterns from data in both languages, rather than being limited
only to English. This is particularly clear when comparing ELECTRA
with multilingual BERT, which have been pre-trained on the same
datasets in English.

For Serbian comments, the reverse holds true, with monolingual
BERTić outperforming its multilingual counterparts. At first glance, this
finding may seem counter-intuitive, particularly since Serbian com-
ments often contain some terms in English and programming keywords
that are, by definition, in English. For example, the comment BEGIN
i END funkcije idu u paru i nikad ne mogu ici disjunk-
tno, odnosno jedno bez drugog! (engl. functions BEGIN
and END go in pair and can never be disjunct, that is,
one cannot go without the other!) is correctly classified as
Notice comment by BERTić, whereas multilingual BERT classifies it as
Functional-Inline. A likely explanation for this discrepancy can be found
upon closer examination of the datasets used to pre-train multilingual
BERT and BERTić. The multilingual BERT’s training data most relevant
to the comment dataset in Serbian consisted of entries taken from
Wikipedia in Serbian and closely related languages, such as Croatian,
Bosnian, and Serbo-Croatian. There are currently over 416 million
words in these four Wikipedias taken together7, but this number was
lower in 2018/2019 when multilingual BERT was trained. On the
other hand, BERTić was pre-trained using multiple large datasets in
these languages, including several web corpora, totaling around 8400
million words. Such a large training set may have allowed BERTić to
model the semantics of texts in Serbian much better than multilingual
BERT, leading to the observed performance discrepancies. However, a
comprehensive exploration of this issue is left for further work.

In both languages, multilingual BERT outperforms XLM-RoBERTa.
This is consistently true in the multilingual setting and almost always
true in the cross-lingual setting. With XLM-RoBERTa’s propensity to-
wards higher output variance and its need for longer fine-tuning to
address the issue, it can be concluded that multilingual BERT is the
superior option for the comment categorization task among the two,
at least within the range of fine-tuning lengths that were considered.
Given that XLM-RoBERTa was pre-trained on a significantly larger
dataset than multilingual BERT (Conneau et al., 2019), it might be
able to outperform multilingual BERT with sufficiently long fine-tuning.
However, we found the computational costs of exploring this to be
prohibitive.

Cross-lingual performances are, as expected, noticeably worse than
those obtained either in the monolingual or the multilingual setting.

7 https://meta.wikimedia.org/wiki/List_of_Wikipedias.

https://meta.wikimedia.org/wiki/List_of_Wikipedias
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Fig. 12. Best scores for different classification settings for English.
Fig. 13. Best scores for different classification settings for Serbian.
he discrepancy is quite dramatic for the Full and the Reduced class
et, while in the Binary class set, it is less pronounced. This is particu-
arly true for the Serbian dataset, where cross-lingual methods almost
each the performance of the bag-of-embeddings baseline. It must be
oncluded that while cross-lingual models show promising results in
inary classification, they still do not perform well enough to be of
ractical use.

.3. Analysis across programming languages

Previous results show model performances across the two natural
anguages we consider. To analyze the behavior of the best-performing
odels in more detail, we also look at the transformer performances for

ull class set classification across different programming languages. For
he evaluation, the test set contains comments from the programming
anguage being evaluated, written in the selected natural language
14
— English or Serbian. The training set in the monolingual setting is
comprised of comments from all other programming languages, written
in the same natural language. In the cross-lingual setting, the training
set consists of all comments (from all programming languages) written
in the other natural language. The multilingual training set is a union
of mono- and cross-lingual training data. It should be noted that the
scores we present here are not directly comparable to those shown
in Section 5, since our evaluation method there was to divide data
using stratified cross-validation, which does not focus on programming
languages but instead ensures same class frequencies between the
training and the test data. All models are fine-tuned for five epochs.

Fig. 14 shows the performances of the best transformer models
on English comments. In the monolingual setting we evaluated ELEC-
TRA, and in the multilingual and cross-lingual ones we evaluated
multilingual BERT. In the multilingual and cross-lingual settings, we
omit the results for PHP because we do not have PHP comments
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Fig. 14. Performances across programming languages for comments in English and Full class set.
Fig. 15. Performances across programming languages for comments in Serbian and Full class set.
in Serbian that would be part of the training set. Our results show
that the multilingual setting is superior to others in all programming
languages, which is consistent with the findings in Section 5. Also,
the results for different programming languages are relatively uniform
with the exception of SQL. For SQL comments the cross-lingual setting
outperforms the monolingual one, in contrast to all other programming
languages. SQL is the only non-general purpose programming language,
which makes its comments highly distinct from the ones belonging to
other programming languages. Due to this, classifiers trained solely
on comments from the other programming languages, even though
they are in the same natural language (English), are actually trained
on data which is less relevant to SQL comments than classifiers in
the cross-lingual setting, whose training set includes SQL comments in
Serbian.

Classification performances across programming languages for com-
ments written in Serbian are shown in Fig. 15. We evaluated BERTić for
the monolingual setting and multilingual BERT for the other two. The
15
best scores are obtained in the monolingual setting for all programming
languages except C#, which is also consistent with the findings in the
previous section. Again, classification of SQL comments proves to be
the most difficult.

For both natural languages, the multilingual setting produces more
uniform results across the set of programming languages. This is likely
due to the larger training set available in this setting, which mini-
mizes the impact of individual programming languages’ specificities.
On the other hand, the cross-lingual setting generally produces less
uniform results, since here the train/test set differences are the most
pronounced.

7. Conclusions

This paper has, for the first time, considered the problem of code
comment classification not only in a monolingual setting but also in a

multilingual and cross-lingual one. To achieve this, we have created a
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dataset of code comments in English and Serbian and have annotated it
according to a newly developed taxonomy of code comment categories.
This dataset, encompassing over 10,000 comments drawn from various
programming languages, has been made publicly available, which will
enable progress tracking on this task in the future. We believe this
resource will be particularly useful for the further development of NLP
research in under-resourced languages such as Serbian.

The conducted experiments have shown that linear bag-of-words
classifiers remain quite a strong baseline across all settings and both
natural languages. However, transformer-based neural language models
typically outperform them. For the Serbian data, the monolingual
BERTić model proves to be the best option. On the other hand, on
the English data, the multilingual BERT model excels. The cross-lingual
setting falls behind the monolingual and multilingual settings, though
their performances in binary classification show some promise. These
findings are confirmed with the analysis of model performances across
different programming languages.

The research presented here has two limitations. The first is that
the maximum number of training epochs for transformer-based models
was kept at 5 due to time considerations. It is possible that some
of the evaluated models, particularly XLM-RoBERTa, could perform
noticeably better if longer fine-tuning lengths were used. The second
research limitation is the relatively small size of the created dataset and
the imbalance in the number of samples for each comment category.

In the future, we plan to use the created code comment classifiers as
a first step in tackling the task of Cross-Level Semantic Similarity in the
code comment domain and for Semantic Code Search. There are also
multiple avenues of further research into the code comment classifica-
tion task. For instance, explicit positional features could be provided
to classifiers, instead of relying solely on a comment’s textual content.
Another important issue would be the automatic treatment of longer
comments belonging to multiple classes, a problem not encountered in
the presented dataset since such comments were manually divided into
multiple units during the annotation process.

CRediT authorship contribution statement

Marija Kostić: Conceptualization, Software, Validation, Formal
analysis, Investigation, Data curation, Writing – original draft. Vuk
Batanović: Conceptualization, Methodology, Writing – review & edit-
ing, Supervision. Boško Nikolić: Resources, Writing – review & editing,
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The link to the data and code can be found in the manuscript.

Code comment categorization corpus (Original data) (Github)

Acknowledgments

Authors would like to thank Aleksa Srbljanović for participating
in the data annotation process, and Vuk Jovanović for developing the
Commano annotation tool.

Funding

This work was supported by the Science Fund of the Republic of
Serbia [grant number 6526093].
16
References

Agirre, E., Cer, D., Diab, M., Gonzalez-Agirre, A., 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In: The First Joint Conference on Lexical and
Computational Semantics–Volume 1: Proceedings of the Main Conference and the
Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on
Semantic Evaluation.

Artstein, R., Poesio, M., 2008. Inter-coder agreement for computational linguistics.
Comput. Linguist. 34 (4), 555–596. http://dx.doi.org/10.1162/coli.07-034-R2.

Bird, S., Klein, E., Loper, E., 2009. Natural Language Processing with Python. O’Reilly
Media, Inc..

Blasi, Goffi, A., Kuznetsov, K., Gorla, A., Ernst, M.D., Pezzè, M., Castellanos, S.D., 2018.
Translating code comments to procedure specifications. In: Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis. New
York, NY, USA, http://dx.doi.org/10.1145/3213846.3213872.

Chen, Q., Xia, X., Hu, H., Lo, D., Li, S., 2021. Why my code summarization model
does not work: Code comment improvement with category prediction. ACM Trans.
Softw. Eng. Methodol. 30 (2), http://dx.doi.org/10.1145/3434280.

Clark, K., Luong, M.-T., Le, Q.V., Manning, C.D., 2020. ELECTRA: Pre-training text
encoders as discriminators rather than generators. http://dx.doi.org/10.48550/
arXiv.2003.10555, arXiv.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.
20 (1), 37–46. http://dx.doi.org/10.1177/001316446002000104.

Conneau, Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F.,
Grave, E., Ott, M., Zettlemoyer, L., Stoyanov, V., 2019. Unsupervised cross-
lingual representation learning at scale. http://dx.doi.org/10.48550/arXiv.1911.
02116, arXiv.

de Souza, S.C.B., Anquetil, N., de Oliveira, K.M., 2005. A study of the documentation
essential to software maintenace. In: Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting & Designing for Pervasive
Information. New York, NY, USA, http://dx.doi.org/10.1145/1085313.1085331.

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. BERT: Pre-training of deep
bidirectional transformers for language understanding. http://dx.doi.org/10.48550/
arXiv.1810.04805, arXiv.

Google, 2022a. Google C++ style guide - Comments. [Online]. Available: https://
google.github.io/styleguide/cppguide.html#Comments. [Accessed 27 June 2022].

Google, 2022b. Google Python style guide. [Online]. Available: https://google.github.
io/styleguide/pyguide.html. [Accessed 27 June 2022].

Grave, E., Bojanowski, P., Gupta, P., Joulin, A., Mikolov, T., 2018. Learning word
vectors for 157 languages. In: Proceedings of the Eleventh International Conference
on Language Resources and Evaluation.

Gvero, T., Kuncak, V., 2015. Synthesizing java expressions from free-form queries.
SIGPLAN Not. 50 (10), 416–432. http://dx.doi.org/10.1145/2858965.2814295.

Haouari, D., Sahraoui, H., Langlais, P., 2011. How good is your comment? A study
of comments in Java programs. In: Proceedings of the International Symposium
on Empirical Software Engineering and Measurement. http://dx.doi.org/10.1109/
ESEM.2011.22.

Hartzman, C.S., Austin, C.F., 1993. Maintenance productivity: Observations based
on an experience in a large system environment. In: Proceedings of the 1993
Conference of the Centre for Advanced Studies on Collaborative Research: Software
Engineering.

Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., Brockschmidt, M., 2019. CodeSearchNet
challenge: Evaluating the state of semantic code search. http://dx.doi.org/10.
48550/arXiv.1909.09436, arXiv.

Jurgens, D., Pilehvar, M.T., Navigli, R., 2014. SemEval-2014 task 3: Cross-level
semantic similarity. In: Proceedings of the 8th International Workshop on Semantic
Evaluation. pp. 17–26. http://dx.doi.org/10.3115/v1/S14-2003.

Jurgens, D., Pilehvar, M.T., Navigli, R., 2016. Cross level semantic similarity: an
evaluation framework for universal measures of similarity. Lang. Resour. Eval. 5
(1), 5–33. http://dx.doi.org/10.1007/S10579-015-9318-3.

Kostić, M., Srbljanović, A., Batanović, V., Nikolić, B., 2022. Code comment classification
taxonomies. In: Proceedings of the 9th International Conference on Electrical,
Electronic and Computing Engineering.

Kramer, D., 1999. API documentation from source code comments: A case study of
Javadoc. In: Proceedings of the 17th Annual International Conference on Computer
Documentation. New York, NY, USA, http://dx.doi.org/10.1145/318372.318577.

Krippendorff, K., 2004. Content Analysis: An Introduction to its Methodology. Sage
publications.

Ljubešić, N., 2018. Word Embeddings CLARIN.SI-Embed.Sr 1.0. Jožef Stefan Institute,
http://hdl.handle.net/11356/1206.

Ljubešić, N., Dobrovoljc, K., 2019. What does neural bring? Analysing improvements in
morphosyntactic annotation and lemmatisation of Slovenian, Croatian and Serbian.
In: Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing.
http://dx.doi.org/10.18653/v1/W19-3704.

Ljubešić, N., Lauc, D., 2021. BERTić - The transformer language model for Bosnian,
Croatian, Montenegrin and Serbian. In: Proceedings of the 8th Workshop on
Balto-Slavic Natural Language Processing.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A., 2018. Advances in
pre-training distributed word representations. In: Proceedings of the Eleventh
International Conference on Language Resources and Evaluation.

https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
https://github.com/ETF-NLP/AVANTES-Classification
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb1
http://dx.doi.org/10.1162/coli.07-034-R2
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb3
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb3
http://dx.doi.org/10.1145/3213846.3213872
http://dx.doi.org/10.1145/3434280
http://dx.doi.org/10.48550/arXiv.2003.10555
http://dx.doi.org/10.48550/arXiv.2003.10555
http://dx.doi.org/10.48550/arXiv.2003.10555
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.48550/arXiv.1911.02116
http://dx.doi.org/10.48550/arXiv.1911.02116
http://dx.doi.org/10.48550/arXiv.1911.02116
http://dx.doi.org/10.1145/1085313.1085331
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.1810.04805
http://dx.doi.org/10.48550/arXiv.1810.04805
https://google.github.io/styleguide/cppguide.html#Comments
https://google.github.io/styleguide/cppguide.html#Comments
https://google.github.io/styleguide/cppguide.html#Comments
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb13
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb13
http://dx.doi.org/10.1145/2858965.2814295
http://dx.doi.org/10.1109/ESEM.2011.22
http://dx.doi.org/10.1109/ESEM.2011.22
http://dx.doi.org/10.1109/ESEM.2011.22
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb16
http://dx.doi.org/10.48550/arXiv.1909.09436
http://dx.doi.org/10.48550/arXiv.1909.09436
http://dx.doi.org/10.48550/arXiv.1909.09436
http://dx.doi.org/10.3115/v1/S14-2003
http://dx.doi.org/10.1007/S10579-015-9318-3
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb20
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb20
http://dx.doi.org/10.1145/318372.318577
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb22
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb22
http://hdl.handle.net/11356/1206
http://dx.doi.org/10.18653/v1/W19-3704
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb25
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb26
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb26


M. Kostić, V. Batanović and B. Nikolić Engineering Applications of Artificial Intelligence 124 (2023) 106485
Nie, P., Rai, R., Li, J.J., Khurshid, S., Mooney, R.J., Gligoric, M., 2019. A framework
for writing trigger-action todo comments in executable format. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. New York, NY, USA,
http://dx.doi.org/10.1145/3338906.3338965.

Oracle, 2022. How to write doc comments for the Javadoc tool. [Online]. Avail-
able: https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html.
[Accessed 27 June 2022].

Padioleau, Y., Tan, L., Zhou, Y., 2009. Listening to programmers — Taxonomies and
characteristics of comments in operating system code. In: Proceedings of the IEEE
31st International Conference on Software Engineering. http://dx.doi.org/10.1109/
ICSE.2009.5070533.

Pandita, R., Xiao, X., Zhong, H., Xie, T., Oney, S., Paradkar, A., 2012. Inferring method
specifications from natural language API descriptions. In: Proceedings of the 34th
International Conference on Software Engineering. http://dx.doi.org/10.1109/ICSE.
2012.6227137.

Pascarella, L., Bruntink, M., Bacchelli, A., 2019. Classifying code comments in Java
software systems. Empir. Softw. Eng. 24 (3), 1499–1537. http://dx.doi.org/10.
1007/s10664-019-09694-w.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12 (85), 2825–2830.

Popović, M., Arcan, M., 2015. Identifying main obstacles for statistical machine
translation of morphologically rich South Slavic languages. In: Proceedings of the
18th Annual Conference of the European Association for Machine Translation.

Porter, M., 1980. An algorithm for suffix stripping. Program: Electron. Libr. Inf. Syst.
14 (3), 130–137. http://dx.doi.org/10.1108/eb046814.

Shinyama, Y., Arahori, Y., Gondow, K., 2018. Analyzing code comments to boost pro-
gram comprehension. In: Proceedings of the 25th Asia-Pacific Software Engineering
Conference. http://dx.doi.org/10.1109/APSEC.2018.00047.

Steidl, D., Hummel, B., Juergens, E., 2013. Quality analysis of source code comments.
In: Proceedings of the 21st International Conference on Program Comprehension.
http://dx.doi.org/10.1109/ICPC.2013.6613836.
17
Tan, L., Yuan, D., Krishna, G., Zhou, Y., 2007. /*Icomment: bugs or bad comments?*/.
In: Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles. New York, NY, USA, http://dx.doi.org/10.1145/1294261.1294276.

Tenny, T., 1985. Procedures and comments vs. the banker’s algorithm. SIGCSE Bull.
17 (3), 44–53. http://dx.doi.org/10.1145/382208.382523.

Tenny, T., 1988. Program readability: procedures versus comments. IEEE Trans. Softw.
Eng. 14 (9), 1271–1279. http://dx.doi.org/10.1109/32.6171.

Wolf, T., Debut, L., Sahn, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T.,
Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y.,
Plu, J., Xu, C., Le Scao, Teven, Gugger, S., Drame, M., Lhoest, Q., Rush, A., 2020.
Transformers: State-of-the-art natural language processing. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6.

Woodfield, S.N., Dunsmore, H.E., Shen, V.Y., 1981. The effect of modularization and
comments on program comprehension. In: Proceedings of the 5th International
Conference on Software Engineering.

Zhai, J., Huang, J., Ma, S., Zhang, X., Tan, L., Zhao, J., Qin, F., 2016. Automatic
model generation from documentation for Java API functions. In: Proceedings of
the 38th International Conference on Software Engineering. New York, NY, USA,
http://dx.doi.org/10.1145/2884781.2884881.

Zhai, J., Xu, X., Shi, Y., Tao, G., Pan, M., Ma, S., Xu, L., Zhang, W., Tan, L., Zhang, X.,
2020. CPC: automatically classifying and propagating natural language comments
via program analysis. In: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering. New York, NY, USA, http://dx.doi.org/10.1145/
3377811.3380427.

Zhang, J., Xu, L., Li, Y., 2018. Classifying Python code comments based on supervised
learning. In: Proceedings of the International Conference on Web Information
Systems and Applications. http://dx.doi.org/10.1007/978-3-030-02934-0_4.

Zhong, H., Zhang, L., Xie, T., Mei, H., 2009. Inferring resource specifications from
natural language API documentation. In: Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering. http://dx.doi.org/10.1109/
ASE.2009.94.

http://dx.doi.org/10.1145/3338906.3338965
https://www.oracle.com/technical-resources/articles/java/javadoc-tool.html
http://dx.doi.org/10.1109/ICSE.2009.5070533
http://dx.doi.org/10.1109/ICSE.2009.5070533
http://dx.doi.org/10.1109/ICSE.2009.5070533
http://dx.doi.org/10.1109/ICSE.2012.6227137
http://dx.doi.org/10.1109/ICSE.2012.6227137
http://dx.doi.org/10.1109/ICSE.2012.6227137
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1007/s10664-019-09694-w
http://dx.doi.org/10.1007/s10664-019-09694-w
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb32
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb33
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb33
http://dx.doi.org/10.1108/eb046814
http://dx.doi.org/10.1109/APSEC.2018.00047
http://dx.doi.org/10.1109/ICPC.2013.6613836
http://dx.doi.org/10.1145/1294261.1294276
http://dx.doi.org/10.1145/382208.382523
http://dx.doi.org/10.1109/32.6171
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.6
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb41
http://refhub.elsevier.com/S0952-1976(23)00669-3/sb41
http://dx.doi.org/10.1145/2884781.2884881
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1145/3377811.3380427
http://dx.doi.org/10.1007/978-3-030-02934-0_4
http://dx.doi.org/10.1109/ASE.2009.94
http://dx.doi.org/10.1109/ASE.2009.94
http://dx.doi.org/10.1109/ASE.2009.94

	Monolingual, multilingual and cross-lingual code comment classification
	Introduction
	Related work
	Dataset construction and annotation
	Data analysis
	Model evaluation
	Evaluation setup
	Monolingual classification
	Bag-of-words
	Bag-of-embeddings
	Transformer models

	Multilingual classification
	Cross-lingual classification

	Discussion and Analysis
	Comparison to related work
	Discussion about our evaluation results
	Analysis across programming languages

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


